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Rayleighachrodinger perturbation theory with a strong 
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Department of Physical Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, 
Israel 

Received 12 December 1984, in final form 22 July 1985 

Abstract. The bound state solutions of Schrodinger’s equation for the anharmonic oscillator 
potentials V = x2+ AxZk ( k  = 2 , 3 ,  . . .) have been investigated, using elementary techniques 
of low-order variational perturbation theory. For the quartic oscillator ( k  = 2)  a scaled 
harmonic potential provides a remarkably accurate model for all A. Although this model 
is slightly less satisfactory for higher-order anharmonicities ( k  2 3) ,  our perturbation 
procedures remain effective, and can be applied successfully provided that higher-order 
terms are calculated. 

1. Introduction 

In the last few years, there has been renewed interest in the application of Rayleigh- 
Schrodinger (RS) perturbation theory (PT), particularly for cases in which the standard 
RSFT energy series is known to be divergent or asymptotic. Considerable analytical 
and computational effort has led to a rich variety of summation techniques which 
extract useful information from the calculated RSPT coefficients. The recent review of 
Cizek and Vrscay (1982) contains a fairly comprehensive bibliography of many of 
these developments. 

Some of the problems which normally lead to a singular RSPT energy expansion 
can be treated effectively by other (non-perturbative) means. However, it is often also 
possible to obtain accurate solutions from a variant of RSPT which appears to avoid 
the formal difficulties of the standard theory. The procedure has been described 
previously (Cohen and Kais 1984). It is based on rewriting the system Hamiltonian 

H ( A )  = Ho+ AH1 (1) 

in which Ho and H, are A-independent operators, in an equivalent form with h -  
dependent operators, 

(2) 
The essential difference between (1) and (2) stems from the observation that whereas 
the physical perturbation parameter A may assume very large values, the formal 
parameter p is limited to the range Os p s 1. The improved convergence of the RSFT 

energy expansion based on (2) depends on the possibility of choosing Al(A) small by 
comparison with R,,(A), for each A of interest. 

Clearly, the success of this procedure, which yields a renormalised energy series 
(Killingbeck 1977), depends critically on the choice of R0(A). This must be a soluble 

H ( A )  = H ( A ;  p = l) ,  H ( A, CL = Ro( A ) + PRI ( A 9 
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model Hamiltonian and should reflect (as far as possible) the A dependence of the 
given (physical) Hamiltonian H ( A ) .  In our earlier treatment of the problem of a 
hydrogen atom in the presence of a strong magnetic field (Cohen and Kais 1984) and 
of the Stark effect of a rigid rotor (Cohen et a1 1984), Ro(A) could be chosen to 
reproduce the essential features of H ( A )  at both limits, A + O  and A +CO. This is not 
possible in the present case. 

Here, we treat general anharmonic oscillators, with 

H ( A )  = -d2/dxZ+X2+A~2k,  (3  1 

f l o ( A )  = -d2/dX2+ a2x2,  (4) 

and have adopted a scaled harmonic oscillator model, 

where a = a ( A )  remains to be selected. As we show in the following, this choice is 
most appropriate for the quartic anharmonic oscillator ( k  = 2) but becomes progress- 
ively less satisfactory for higher k. Since this H0(A) approaches H ( A )  only as A -$O 
(but not as A+w, no matter how (Y is chosen), we might expect to encounter 
convergence difficulties for large A. We shall see, however, that (Y may be chosen so 
that individual terms of the RSPT series which arise from fro( A )  remain finite no matter 
how large A becomes. Furthermore, energy calculations based on & ( A ) ,  and taken 
to first order only, yield results which are qualitatively correct for all A for k = 2 , 3 , 4 .  
These calculations require nothing more than the well known harmonic oscillator 
eigenfunctions. 

For the quartic anharmonic oscillator ( k  = 2), highly accurate energies are obtained 
by calculating in addition second- and third-order energy corrections. This enables 
us to calculate variational upper bounds for the lowest states of even and odd parity 
and leads to results more accurate for the ground state than those obtained by 
Schonhammer and Cederbaum (1975) using a similar procedure. To achieve similar 
accuracy for higher k ( 3 3 ) ,  it will probably be necessary to calculate increasingly 
higher-order energy corrections. This will present no great difficulty in practice, since 
the RSPT wavefunction corrections may be obtained analytically to any desired order 
(cf Bender and Wu 1969) or, alternatively, the hypervirial theorem method (Swenson 
and Danforth 1972, Killingbeck 1981) may be employed to obtain energy corrections 
directly. 

2. Energy expansions 

It is convenient to make a change of scale x +  x / ( Y ” ~ ,  E + a E  so that, effectively, 

Ro(A) = (Y( -d2/dX2+ x2), E ? , ( A )  = a(px2+qxZk),  ( 5 )  

where 

p = ( l / a 2 - 1 ) ,  q = A/aki’ .  

Now it is clear that E has a formal RSPT expansion, which arises naturally if we apply 
two perturbations px2 and qxZk to Ro(A): 

E = a E,p’q’. 
i j  

(7) 
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By combining the two perturbing terms into a single perturbation f i l ( A ) ,  we are simply 
rewriting the double sum (7)  in the equivalent form 

E = a c E, ,  E ,  = c c Eijp‘q’. 
r i + j = r  

However, we may equally absorb the px2 perturbation into f i o ( A ) ,  make a further 
change of scale x + x / (  1 + P ) ’ ’ ~ ,  E + ( 1  + p ) ’ / ’ E  and obtain directly an expansion in 
terms of a single parameter r :  

E = c ~ ( l + p ) ” ~ ~  Errr, r =  q / ( 1  + p ) 1 / 2 ( k + ”  ( 9 )  
1 

Expanding ( 1  + p ) ’ / ’  and rl in power series now allows us to obtain the coefficients 
E ,  of (8) from the traditional RSFT coefficients E,  since it is clear from ( 6 )  and ( 9 )  that 

a ( l + p ) ’ l 2 =  1 ,  r = A ,  ( 1 0 )  

so that the total E is independent of a, as it must be. 
However, each individual E ,  in the expansion (8) is a function of a and in order 

for E ,  to remain finite as A + 03, it is sufficient to choose a - A ‘ ’ (k+l ’ .  By contrast, each 
term in the standard expansion I; , E,A * becomes infinite with A. 

3. Zero-order calculations 

All the states of H ( A )  are of definite parity, and for the lowest even- and odd-parity 
states, those values of a ( A )  which minimise the variational energy calculated with a 
zero-order eigenfunction Go( a) of f i o ( A ) ,  

E ( a 1 = (+o( a )I H ( A  )I cLo( a ))/(cLo( )I Go( a I), ( 1 1 )  

yield rigorous upper bounds to the energy for any given A. Thus, we minimise & ( a )  
which is here given explicitly by 

E L ~ ~ ’ ( A )  = a [ ( 2 n + l ) + f ( 2 n + l ) p + A ‘ , Z k ’ q ]  ( 1 2 )  

and A(,2k’ = ( x ~ ~ ) , ,  has been evaluated quite generally as 

The variation yields 

E ~ ’ ~ ’ ( A )  = f ( 2 n  + l ) [ ( k +  l ) ~  + ( k  - l ) / a ] / k  ( 1 4 )  
where a satisfies 

a k - ’ ( a 2 -  1 )  = 2 I ~ A ‘ , ~ ~ ’ A / ( 2 n + l )  

so that for A sufficiently large 

In table 1 ,  we present variational energies of the lowest four states ( n  = 0 , 1 , 2 , 3 )  
of the quartic anharmonic oscillator ( k = 2 )  calculated from (14), ( 1 5 )  and ( 1 6 )  as 
compared with the converged Hill determinant values of Biswas et al (1973) .  Our 
results for the lowest even- and odd-parity states ( n  = 0 , l )  are seen to be upper bounds 
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Table 1. Energy levels of the quartic anharmonic oscillator. 

A 

0.1 
0.2 
0.5 
1 
2 
5 

10 
20 
50 

100 

n = O  n = l  n = 2  n = 3  

(1) (2) 

1.066 20 1.065 29 
1.12061 1.11829 
1.248 03 1.241 85 
1.403 32 1.392 35 
1.625 00 1.607 54 
2.047 04 2.018 34 
2.488 62 2.449 17 
3.062 50 3.009 94 
4.078 52 4.003 99 
5.095 16 4.999 41 

(1) 

3.310 31 
3.546 77 
4.069 92 
4.678 23 
5.519 87 
7.082 28 
8.691 31 

10.764 2 
14.411 2 
18.046 8 

(2) 

3.306 87 
3.539 01 
4.051 93 
4.648 8 1 
5.475 78 
7.013 48 
8.599 00 

10.643 2 
14.241 7 
17.830 2 

(1) (2) 

5.748 00 5.747 96 
6.276 49 6.277 25 
7.393 08 7.396 90 
8.647 04 8.655 05 

10.344 7 10.358 6 
13.443 8 13.467 7 
16.602 3 16.635 9 
20.648 8 20.694 1 
27.739 2 27.804 0 
34.790 4 34.874 0 

(1) 

8.346 15 
9.243 87 

11.085 1 
13.109 5 
15.815 9 
20.708 8 
25.666 8 
31.998 6 
43.068 5 
54.062 9 

(2) 

8.352 68 
9.257 77 

11.115 2 
13.156 8 
15.884 8 
20.814 0 
25.806 3 
32.1803 
43.321 6 
54.385 3 

Asymptotic 
ElA’l’ 1.081 1.07 3.851 3.84 7.441 7.51 11.61 11.7 

(1) Present results, equations (14) and (15) 
(2) Biswas et a1 (1973). 
1 From equation (16). 

as required, but this is not the case for the excited states ( n  = 2,3) .  Nevertheless, this 
choice of (Y clearly yields accurate energies for all calculated A, extending also to the 
asymptotic region, A + CO. 

Note that we obtain full agreement with the calculations of Feranchuk and Komarov 
(1982) for the n =0,  1 states but not for the n = 2  state. Their procedure, though 
expressed formally in terms of creation and  annihilation operators, is evidently very 
similar to ours and  it appears that their numerical results for the n = 2 state are in error. 

Table 2 contains a similar comparison for the even-parity ground states of the sextic 
( k  = 3 )  and octic ( k  = 4 )  anharmonic oscillators, from which it is clear that this 

Table 2. Ground state energies of the sextic and octic oscillators. 

k = 3  k = 4  

A (1) (2) (1) (2) 

0.1 
0.2 
0.5 
1 
2 
5 

10 
20 
50 

100 
Asymptotic 
E;,Zk)lA l / ( k + l )  

1.11993 1.109 09 
1.192 81 1.173 89 
1.334 89 1.300 99 
1.484 05 1.435 62 
1.675 59 1.609 93 
2.005 31 1.912 45 
2.322 92 2.205 72 
2.710 02 2.564 64 
3.348 81 3.15902 
3.946 99 3.716 97 

1.221 1.17 

1.211 27 
1.300 53 
1.454 52 
1.601 90 
1.779 38 
2.066 52 
2.329 02 
2.636 17 
3.121 01 
3.556 52 

1.381 

1.168 
1.240 
1.367 
1.490 
1.640 
1.889 
2.118 
2.387 
2.80 
3.18 

1.27 

(1) Present results, equations (14) and (15). 
(2) Biswas et al (1973). 
1 From equation (16). 
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approximation deteriorates in accuracy with increasing k for any given A. This is due 
to the fact that eigenfunctions of H ( A )  behave asymptotically as exp(-A”21x(k/k) (cf 
Killingbeck 1985, Schwartz 1985) which differs increasingly from the harmonic oscil- 
lator eigenfunctions with increasing k. Nevertheless, the qualitative features of the 
eigenvalues ~ ( , 2 ~ ) (  A )  are adequately reproduced and even the asymptotic limit 
E ; * ~ ’ / A  l ’ ( k + l )  obtained from (16) remains fairly satisfactory. 

4. First-order calculations 

A major advantage of our choice of f i o ( A )  is that it leads to RSPT equations which are 
analytically soluble. If Go( a )  provides a good approximation to an exact eigenfunction 
+ ( A ) ,  it is to be expected that the first-order approximation +o++l(p, q )  will yield 
very accurate results, which may be improved variationally (for ground states retaining 
the upper bound property) by using Go+ ~ + ~ ( p ,  9). 

Since it is always possible to choose G1(p, q )  orthogonal to +o, a simple measure 
of the importance of + , ( p ,  q )  is provided by the integral SI, = ( + 1 1 + 1 ) ,  which should 
be as small as possible by comparison with ( (clol Go) = 1. Thus, for any state, it seems 
sensible to minimise & , ( a ) ;  this provides an alternative choice of a, but requires that 
t,hl(p, q )  be calculated explicitly. (This presents no difficulty here; in other cases a 
variational approximation to (LI(p, q )  should suffice.) The possibility of minimising 
Sll in order to improve an RSPT expansion has been considered previously by Silverman 
(1981). 

Since first-order solutions contain steadily increasing numbers of terms as k 
increases, we treat here the quartic anharmonic oscillator only. The zero- and first-order 
solutions for an arbitrary state (labelled n) are then 

+o( n )  = I n) = Nn exp( - x 2 / 2 ) H n  ( X I  

$1 ( n )  = an-41 -4) + an-2Jn - 2 )  + an+2( n + 2) + a n + 4 /  n + 4), 

(17) 

(18) 

and 

where H , ( x )  is the usual Hermite polynomial, N,, the appropriate normalisation factor 
and the coefficients appearing in I , / J ~ ( ~ )  are explicitly 

an-4 = 2 b( n) b( n - 2)q ,  a n - 2 =  b ( n ) [ p +  ( 2 n  -1)ql, (19) 
a n t 2  = - b ( n  + 2 ) [ p  + ( 2 n  + 3)ql, an+4  = -2 b( n + 4) b( n + 2)q ,  

where 

b( n) =Q[ n( n - 

E o  = ( 2 n  + l ) ,  

(20)  
It is now a straightforward calculation to obtain 

E l  = i ( 2 n  + 1)p + $( 2n2 + 2n + l )q ,  

E* = Ap2 + Bpq + Cq2, 
c3 = Dp3 + Fp2q + Gpq2+ Jq3 ,  

SI = Kp2 + Lpq + Mq2. 
and 

The coefficients are gathered for convenience in table 3, and the interrelations implied 
by equations (8) and (9) provide a valuable check. 
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Table 3. Coefficients appearing in equations (21). 

A=-'  , ( 2 n + l )  
B =  -:(2n2+2n+l) 

G =&(34n3-t 51 n 2 +  59n + 21) 
J = &( 125n4+250n3 +472n2+347n + 111) 

L = $2. + l ) ( n 2 +  n + 3 )  
M = &65n4+ 130n3 + 487n2 +422n + 156) 

C = -&(34n3 + 5 1 n 2  + 59n + 21) K =A(??+ n + 1) 
D = &(2n + 1) 
F = $ ( 2 n 2 + 2 n  + 1) 

We are now able to calculate truncated perturbation sums, 
N 

E = CY E ~ ,  N = 1,2,3, 
f =o 

and two variational upper bounds (for ground states), 

E(cCIo+cL,) = ~ [ & O + & l + ( & 2 + & 3 ) / ( 1 + S I , ) l  

E($,+ 77cCIl) = CY[EO+ & I +  7 7 4 ,  

s,,r)*+ (1 - & 3 / & 2 ) 7 )  - 1 = 0. 

and 

where (Dalgarno and Stewart 1961) 

Note that when SI1 is sufficiently small, (24) yields the [2/1] Pad6 approximation to 
E (the so-called geometric approximation) 

Egeom = ( Y [ E O +  E l  + &2/(1 - & 3 / ~ 2 ) 1 .  (26) 
Up to this point, a remains at our disposal. We have performed two different sets of 
calculations, with a minimising the first-order energy sum ~ ( E ~ + E , ) ,  and with a 
minimising S ,  ,. 

The results for each of the lowest even- and odd-parity states are very similar for 
both choices of a, but the convergence of the low-order partial sums is slightly more 
rapid when S , ,  is minimised, and we present these values in tables 4 and 5. It will be 

Table 4. Ground state energies of the quartic anharmonic oscillator. 

Perturbation partial sums Variational estimates Accurate 

A (1) (2) (3) (4) (5) (6) (7) 

0.1 1.0662 1.0652 1.0653 1.0653 1.0653 1.0653 1.0653 
0.2 1.1206 1.1179 1.1185 1.1185 1.1184 1.1184 1.1183 
0.5 1.2481 1.2406 1.2429 1.2429 1.2424 1.2424 1.2419 
1 1.4036 1.3899 1.3949 1.3949 1.3936 1.3936 1.3924 
2 1.6254 1.6034 1.6125 1.6125 1.6098 1.6098 1.6075 
5 2.0479 2.0114 2.0271 2.0278 2.0227 2.0227 2.0183 

10 2.4899 2.4395 2.4629 2.4630 2.4555 2.4555 2.4492 
20 3.0643 2.9970 3.0291 3.0291 3.0187 3.0187 3.0099 
50 4.081 1 3.9855 4.0320 4.0321 4.0169 4.0168 4.0040 

100 5.0985 4.9757 5.0359 5.0360 5.0162 5.0161 4.9994 

(1 ) Equation (22), N = 1. 
(2) Equation (22), N = 2. 
(3) Equation (22), N = 3. 

(4) Equation (23). 
(5) Equation (24). 
(6) Equation (26). 

(7) Hill determinant, Biswas et a/ (1973). 
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Table 5. First excited state energies of the quartic anharmonic oscillator. 

Perturbation partial sums Variational estimates Accurate 

A (1)  ( 2 )  (3) (4) (5) ( 6 )  (7) 

0.1 
0.2 
0.5 
1 
2 
5 

10 
20 
50 

100 

3.3103 
3.5468 
4.0701 
4.6787 
5.5206 
7.0836 
8.6931 

10,7667 
14.41 47 
18.05 13 

3.3065 
3.5378 
4.0484 
4.6425 
5.4658 
6.9973 
8.5768 

10.6 139 
14.2002 
17.7770 

3.3070 
3.5396 
4.0544 
4.6540 
5.4848 
7.0294 
8.6216 

10.6738 
14.2857 
17.8870 

3.3070 
3.5396 
4.0544 
4.6540 
5.4849 
7.0296 
8.6218 

10.6742 
14.2862 
17.8877 

3.3070 
3.5393 
4.0531 
4.6513 
5.4800 
7.0208 
8.6093 

10.6571 
14.2617 
17.8560 

3.3070 
3.5393 
4.0531 
4.6512 
5.4799 
7.0207 
8.6091 

10.6569 
14.2613 
17.8555 

3.3069 
3.5390 
4.0519 
4.6488 
5.4758 
7.0135 
8.5990 

10.6432 
14.2417 
17.8302 

(1) Equation (22), N = 1. 
(2) Equation (22), N =2.  
(3) Equation (22), N = 3. 

(4) Equation (23). 
(5) Equation (24). 
(6) Equation (26). 

(7) Hill determinant, Biswas et nl (1973). 

observed that SI, is generally so small that the third-order partial sums (22) and the 
simple upper bounds (23) are indistinguishable, as are the improved upper bounds 
(24) and the results of the geometric approximation (26). The second-order partial 
sums (22) are generally too low, but these are not upper bounds even for the ground 
states. 

In table 6 ,  we present similar results for the second excited state ( n  = 2), this being 
the lowest state for which (23) and (24) are not guaranteed bounds. It turns out that 
in this case, only (23) yields upper bounds in practice, but our procedure yields excellent 
approximate energies even when these are (slightly) too low. The modified operator 
method calculations of Feranchuk and Komarov (1984) yield results of similar accuracy 
to ours for both types of states and it is clear that the procedures have much in common. 
Other states ( n  a 3) and other anharmonicities ( k  2 3) may clearly be treated in the 

Table 6. Second excited state energies of the quartic anharmonic oscillator. 

Perturbation partial sums Variational estimates Accurate 

A (1)  (2) (3)  (4) (5) (6) (7) 

0.1 5.7502 5.7461 5.7486 5.7486 5.7476 5.7476 5.7480 
0.2 6.2804 6.2722 6.2793 6.2793 6.2760 6.2760 6.2772 
0.5 7.3998 7.3836 7.4036 7.4036 7.3926 7.3925 7.3969 
1 8.6562 8.6320 8.6676 8.6675 8.6465 8.6464 8.6550 
2 10.3569 10.3229 10.3789 10.3786 10.3441 10.3441 10.3586 
5 13.4608 13.4105 13.5013 13.5008 13.4429 13.4429 13.4677 

10 16.6240 16.5583 16.6821 16.6812 16.6012 16.6012 16.6359 
20 20.6763 20.5915 20.7556 20.7543 20.6475 20.6474 20.6941 
50 27.7767 27.6595 27.8910 27.8891 27.7374 27.7373 27.8040 

100 34.8378 34.6889 34.9858 34.9833 34.7882 34.7881 34.8740 

( 1 )  Equation (22), N = 1. 
(2) Equation (22), N = 2. 
(3) Equation (22), N = 3. 

(4)  Equation (23). 
(5) Equation (24). 
(6) Equation (26). 

(7) Hill determinant, Biswas er a/ (1973). 
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same way, so that the utility of RSPT is dramatically enhanced for strong perturbations 
of this type. 
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